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Abstract
The numerical solution of multibody systems is not a straightforward problem. The for-
mulation of the equations of motion is augmented with the constraint equations that lead
to a set of differential algebraic equations (DAEs). These constraints govern the relative
motion between the system’s components at the position level (geometric constraints) and
may restrict the velocity of particular components (rolling constraints). There are several
factors that determine the effectiveness of numerical integration methods and the extent of
their applicability owing to the various motion circumstances. These factors include numer-
ical stability throughout the integration and computation time, as well as allowable error
percentage and the length of simulation time. In this regard, this research examines exist-
ing approaches for constraint stabilization during numerical integration and introduces a
new methodology based on fuzzy control algorithm, whose coefficients are independent of
the dynamic characteristics of different systems. Schematics of the new methodology are
presented; two examples of spatial multibody systems with holonomic and nonholonomic
constraints are solved to evaluate the effectiveness of the proposed method. It can be con-
cluded that fuzzy control contributes an excellent solution for generic system configuration
and is suitable for lengthy simulations with minimal computation time.

Keywords Multibody system dynamics · Baumgarte stabilization · Fuzzy logic control ·
Nonholonomic constraints

1 Introduction

1.1 Background

Dynamic modeling of multibody systems is a key aid in the analysis, design, optimization,
and control of mechanical, aerospace, and mechatronic systems [2, 24, 41, 50]. During the
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past fifty years, various software tools, both commercial and used in scientific research, that
enable engineers to construct realistic models of multibody systems have been developed
[40, 46, 56]. Year after year, these tools grew more advanced, including methods for nu-
merical integration, simulation, and mathematical transformation that aided the modelling
of complicated systems. However, the significant amount of calculation time required for
numerical calculations remains to be the first concern of the designer, hence the necessity of
relying on computers with multiple cores and activating parallel computations to reduce this
time. Reducing computation time is extremely important in the areas of design, parameter
estimation, and model-based control methods.

In multibody system dynamics, the formulation of the equations of motion uses Newton–
Euler approach augmented with the constraint equations that lead to a set of differential
algebraic equations (DAEs) [8, 44, 45]. The numerical solution of the set of DAE is not
a straightforward problem. There are several methods for solving the DAE. Among these
methods, a stiff Gear algorithm was used, in which the equations of motion are substituted
into the backward difference formula and solved simultaneously with the constraint equa-
tions that represent the kinematic joints of a system. This solution approach may lead to a
worsening violation of the velocity level over time because it does not account for the error
control on the velocity constraints [3, 16].

Real-time simulations are possible when computations are not excessively time-
consuming and the iterations of the numerical solvers have to be sidestepped. Consequently,
explicit numerical integration schemes with a deterministic timing behavior are crucial. One
of the most popular and used methods to solve this problem consists of converting the DAE
system into a set of ordinary differential equations (ODE) [47] by appending the second
derivative with respect to time of the constraint equations [31, 36, 51, 54]. This way, the
constraints are translated into the acceleration level; therefore, the equations of motion are
then transformed from constrained differential equations to unconstrained differential equa-
tions at the position and velocity levels. In this method, the acceleration constraints are
taken into consideration during the numerical integration of the equations of motion and,
therefore, there is no violation at the acceleration level. On the other hand, the position
and velocity constraint equations are ignored, leading to violation of the constraints at the
position and velocity levels and the resulting “drift effect” in the given constraints [26].

To avoid the “drift effect,” it is necessary to eliminate or at least minimize the violation
of the constraints. There are three main ways to handle this problem: methods based on
coordinate partitioning [31, 43, 52, 53], direct correction formulations [51, 54, 55], and
approaches based on constraint stabilization [13–15, 34, 50].

1.2 Problem statement

The research work in this paper is an extension of the application of control theory to sta-
bilizing the kinematic constraints of multibody systems by employing fuzzy control tech-
niques. Fuzzy logic control (FLC) may not need to study the dynamic characteristics of the
system in advance to figure out the control parameters. Instead, the control parameters are
determined parametrically based upon the values of the variables (constraint violations) and
the speed of their change. The challenge of introducing the FLC stabilization is to achieve a
higher level of performance than other stabilization approaches by using an explicit integra-
tion method of any appropriate ODE solver with the largest possible step time of integration
and the shortest possible calculation time.
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1.3 Literature survey

The equations of motion of multibody systems are strongly nonlinear second-order ordinary
differential equations in both the generalized coordinates and the Lagrange multipliers as-
sociated with the motion constraints. The numerical integration of these equations depends
primarily on two factors. The first aspect pertains to the structure of equations, while the
second aspect concerns the type of associated constraints [37].

The classical form of differential-algebraic equations of index-1, in which the general-
ized coordinates are represented by Cartesian coordinates that include both independent and
dependent degrees of freedom, is the most prevalent [8]. Dealing with DAE index-1 permits
easier calculation of forces associated with the constraints, which depend on the Lagrange
multipliers [43]. On the other hand, although the Lagrange multipliers are of no interest,
the formulation of equations of motion in terms of a minimal set of coordinates, typically
in joint space, remains the method of choice for real-time and control applications. Never-
theless, the derivation of the equations is arduous and computationally complex due to the
necessity of inverting the generalized mass matrix [17, 35].

Second, the motion constraints restrict the relative motions of the system’s interconnected
bodies. It may be given by algebraic equations that impose a definite relationship between
the coordinates at the position level, called holonomic constraints. Holonomic constraints in-
clude the geometric descriptions of spherical, revolute, cylindrical, and translational joints.
In addition, the constraints can be described by differential equations that restrict certain
velocity components not originating from position constraints, called nonholonomic con-
straints [27]. Explicitly, the velocity constraint condition cannot be integrated in time to
form a position constraint [12, 36, 39]. For a nonholonomic constraints, it is hard to fig-
ure out a closed-form geometric relationship. This means that the history of a constrained
coordinate is needed to determine its current value. In this context, the rolling contact with-
out slipping represents the most usual nonholonomic constraint, being linearly dependent
on the generalized velocities [21, 42]. Chaplygin sleigh, the snakeboard, the rolling motion
of discs and spheres, the skateboard, and the rattleback are all instances of nonholonomic
systems that may be found in the literature [1, 42]. The transmission of motion through
gear trains, using simplistic assumptions, could be considered an example of these nonholo-
nomic constraints-subjugated systems [9, 31]. Each type of constraints associated with dy-
namic systems possesses a particular manipulation to minimize violations during numerical
integrations.

A generalized coordinate partitioning method was introduced by Wehage [52]. The gen-
eralized coordinates are partitioned into independent and dependent coordinates. The inde-
pendent coordinates are integrated, and the constraint equations are solved to get the de-
pendent coordinates. The selection of a suitable set of independent coordinates is a pivotal
aspect of the coordinate partitioning technique. Although this approach is theoretically rig-
orous, it may exhibit low numerical efficiency when adjusting the independent coordinate
set, which constitutes one significant disadvantage of this method [28, 53]. Nada [31] pro-
posed a strategy of selecting the independent coordinates in the case of systems subjected to
nonholonomic constraints.

In direct correction algorithms, the numerical solution is projected back onto the con-
straints’ manifold after each integration step. The key advantage of this approach lies in its
ability to address constraint violations at both the position and velocity levels while main-
taining the underlying dynamic equations of motion, independent of the integration algo-
rithm utilized. In the case of holonomic and nonautonomous systems, however, this method
is only formulated at the position level. Moreover, it must be noted that the kinematic con-
straints at the position level are typically nonlinear; consequently, the algorithm underlying
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this method is an iterative numerical method, such as the Newton–Raphson method. Based
on the computational tests conducted, this particular process requires a maximum of three
iterations to effectively mitigate the violation of constraints at the position to an acceptable
level. Conversely, since constraints at the velocity level are linear, the constraint violation
for velocities is eliminated with a single step [7]. This could be a source of errors, and the
constraint equations start to be violated. Hence, the approach is inappropriate for moderate
or long simulations period [7, 26].

Among the constraint stabilization approaches, the Baumgarte stabilization method is the
most attractive technique to overcome the drawbacks of the drift effect. Baumgarte’s method
can be looked upon as a PD type control to damp out the acceleration constraint violations
by feeding back the violations of the position and velocity constraints. Moreover, PID type
constraint stabilization method [10, 25] showed a smaller steady state error of the constraint
equation than that using Baumgarte type method. The constraint stabilization approaches
are probably the most popular due to their simplicity and easiness for computational im-
plementation. However, their major drawback is the ambiguity in selecting the stabilization
parameters, which ultimately can lead to failed simulations, even for systems that have valid
solutions [22, 23, 26].

1.4 Scope and contribution

The present study focuses on improving the constraint stabilization methods by adding the
robustness of the solution method. The suggested methodology entails the utilization of
consistent ODE solvers for index-1 DAEs, independent of the dynamic characteristics of the
system, the step time of numerical integration, and the type of constraints. Consequently,
our aim is to employ fuzzy control to stabilize the constraints in that sense, compare the
simulation results with well-established methods in the field, and evaluate the effectiveness
of the suggested method by solving various application examples.

It can be concluded that the proposed method has the potential to serve as an effective
alternative and a feasible option to provide a general and robust technique of constraint
stabilization of multibody systems.

1.5 Organization of the paper

Following the introduction, the paper is organized in five sections. Section 2 is devoted
to the construction of equations of motion using the multibody dynamics approach, and
it discusses the direct correction and Baumgarte stabilization methods. Section 3 presents
the proposed method of constraint stabilization using fuzzy logic control, outlines the so-
lution method, and examines the method upon simple planar pendulum system. Section 4
illustrates the solution of spatial multibody systems subjected to holonomic constraints and
provides comparison with other methods. Section 5 draws the updated scheme for multi-
body systems subjected to nonholonomic constraints. Finally, the concluding remarks are
presented in Sect. 6.

2 Dynamics of multibody system

The multibody system consists of a number of bodies linked together by various types of
joints that limit the relative motion between them. Figure 1 depicts the general configuration
of multibody systems that may contain rigid and/or flexible bodies with small and/or large
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Fig. 1 General configuration of
multibody systems

Fig. 2 Displacement field

deformations. These bodies are connected to each other using several types of joints and/or
actuators and are subjected to several types of forces acting on them.

Defining a coordinate system (X,Y,Z) as the global frame that is fixed in time; the
constraint equations of a holonomic system and its derivatives can be written in terms of the
generalized coordinates and time as follows [44]:

Ch(q, t) = 0, (1)

Ċh(q, q̇, t) = Ch
qq̇ + Ch

t = 0, (2)

C̈h(q, q̇, t) = Ch
qq̈ + (

Ch
qq̇

)
q

q̇ + 2Ch
qt q̇ + Ch

tt = 0. (3)

The vector Ch(q, t) represents the kinematic constraints, qi is the generalized coordinates

vector, and t is the time. The matrix Ch
q = ∂Ch(q,t)

∂q is the constraint Jacobian matrix. The

vectors Ch
t and Ch

tt are the partial derivatives of the constraint function with respect to time.
The local coordinates of an arbitrary point located on body i with respect to body frame(

xi, yi, zi
)
, see Fig. 2, can be described by the vector ūi = [

ūi
x ūi

y ūi
z

]T
, while the global

position r, i.e.,with respect to the global frame, of that point can be expressed as

ri = Ri + Ai ūi , (4)

where ri = [
ri
x ri

y ri
z

]T
is the global position of an arbitrary point on body i, and the

vector Ri = [
Ri

x Ri
y Ri

z

]T
is the global position of the origin of the body coordinate



A. Nada, M. Bayoumi

system. The matrix Ai = Ai
(
θ i

)
is the transformation matrix which depends on the orienta-

tional parameters θ i . Therefore, Eq. (4) shows that the global position vector of an arbitrary
point on a body can be written in terms of the generalized coordinates vector qi , where
qi = [

RiT θ iT
]T

. In the velocity analysis, it is assumed that the positions and orientations
of the system are already known from the position analysis; differentiating Eq. (4) with
respect to time, one obtains the global velocity vector ṙ as follows:

ṙi =
[

I −Ai ˜̄u
i

G
i
]
[

Ṙi

θ̇
i

]

, (5)

where Ṙi represents the global velocity of body frame, I is a 3 × 3 identity matrix, the gen-

eralized velocity vector q̇i =
[

ṘiT θ̇
iT

]T

. The matrix G
i

is defined such that ωi = G
i
θ̇

i
,

in which the velocity transformation matrix G
i

depends on the orientational parameters of
the body, i.e., Euler angles or Euler parameters [4, 19, 48].

The equations of motion governing the dynamics of a multibody system can be obtained
systematically by augmenting the corresponding matrices and vectors of all bodies, and can
be expressed as follows [44]:

[
M ChT

q

Ch
q 0

][
q̈
λh

]
=

[
Q
Qh

d

]
, (6)

where M is the assembled system mass matrix such that M = diag
(
Mi

)
, the matrix Ch

q is
the Jacobian matrix, λh is the vector of Lagrange multipliers associated with the holonomic
constraints. The vector Qh

d is the vector that absorbs all quadratic terms of velocity. This
vector can be obtained by solving Eq.(3) for Ch

qq̈, one can conclude that

Ch
qq̈ = − (

Ch
qq̇

)
q

q̇ − 2Ch
qt q̇ − Ch

tt = Qh
d . (7)

The vector Q(q, q̇, t) is the generalized force vector resulting from external forces Qex, as
well as the centrifugal and Coriolis inertia forces Qv .

Equation (6) is linear in the accelerations and Lagrange multipliers. In most practical
cases, the direct solution of Eq. (6) is preferable. Besides the conceptual simplicity of the
method, it does not require the use of an iterative procedure and permits easier calculation
of forces associated with the constraints, which depend on the Lagrange multipliers [43].
To get the acceleration vector and Lagrange multipliers, one has to get the inverse of the
coefficient matrix, which can be obtained using lower–upper (LU) decomposition, singular
value decomposition, and minimum norm least-squares solution of linear equation. Here
is where the distinction between planar and spatial dynamic applications becomes more
apparent due to the way of describing holonomic constraints and singularity concerns. In
spatial dynamics, Euler parameters do not suffer from the kinematic singularity. However,
the constraint forces associated with Euler parameter constraints are always zero and lead to
a kinetic singularity, i.e., singular coefficient matrix. To overcome this difficulty, the mass
matrix is extended as presented in [31]. On the other hand, Euler’s angles lead to faster
integration compared to the Euler parameters [4, 32] but suffer from kinematic singularities.
Methods of avoiding the kinematic singularities associated with Euler angles utilization are
described in Ref. [19].

It is noteworthy to mention that alternative techniques proposed in the literature do not
necessitate constraint stabilization as they address the integration of the equations of motion
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in the form of differential algebraic equations (DAE) [8]. Nevertheless, this topic is beyond
the scope of this paper, thereby enabling the utilization of any appropriate ODE integration
algorithm, obviating the necessity for a specialized DAE solver.

2.1 Direct correct formulation

In the numerical integration of the equations of motion, Eq. (6), only the differentiated
form of the constraint function, Eq. (3) is satisfied and does not guarantee Ch(q, t) = 0
and Ċh(q, q̇, t) = 0 to be true as time integration goes on. Consequently, some constraints
drifting at the position and velocity level may take place and encounter an integration errors.
To counteract this drifting, it is necessary to correct the system states, after each integra-
tion step, by moving positions and velocities back to their manifolds Ch(q, t), Ċh(q, q̇, t)

respectively, by adding small corrections. This correction process is called post stabilization
procedure and can be implemented using the Newton–Raphson method [51].

2.1.1 Position stabilization

After each integration step, it is necessary to correct the systems state by moving positions
back to their manifolds Ch(q, t) = 0 by means of small corrections. The stabilization step
takes the result of the integration step as input and gives a correction so that the final result
is closer to the constraint manifold. The position stabilization is then as follows (can be used
using the Newton–Raphson method): Evaluate the Newton difference �qn and then update
the generalized coordinate as follows:

�qn = −Ch†

q (qn) C(qn) (8)

� (9)

qn+1 = qn + �qn. (10)

Since the constraint Jacobian is a rectangular matrix, its inverse does not exist, and Ch†

q
denotes the Moore–Penrose pseudoinverse of the matrix. The pseudoinverse computation
is based on the singular value decomposition of the Jacobian matrix. Many algorithms have
been developed in the literature to estimate the pseudoinverse of constraint Jacobian [54, 55].
When the error limit is obeyed, i.e., ‖�qn‖ ≤ ε, then q (t) = qn+1.

2.1.2 Velocity stabilization

The velocities can be moved back to their manifolds Ċh(q, q̇, t) by means of one step cor-
rection, where no iterations are necessary [31], as follows:

q̇i+1 = q̇i + �q̇i , (11)

where the differences �q̇i can be obtained by

�q̇i = −Ch†

q Ċ(q, t). (12)

The vector Ċh(q, q̇, t) can be obtained using Eq. (2).
The direct correct formulation described above is able to eliminate the violation of con-

straints at both the position and velocity levels without changing the equations of motion. In
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some cases, the evaluation of the inverse matrix can exhibit numerical instabilities and can
also be costly from the computational point of view. Moreover, neglecting the inertial prop-
erties of the systems can result in physical inconsistency, and different weighting factors
should be utilized [6]. Some works have proposed including inertia of bodies as weighting
factors, which allow for the adjustments to be made in an inverse manner to the system
inertia [26].

2.2 Baumgarte stabilization

The second-order equations, Eq. (3), are unstable, and thus small perturbations due to nu-
merical errors introduced by the integration process cannot be corrected naturally, and they
only tend to be amplified. Baumgarte introduced feedback terms that penalize the system
response if violations on the position or velocity constraint equations occur [5]. The Baum-
garte stabilization method is to replace the differential equations Eq. (3) by

C̈h + 2αĊh + β2Ch = 0, (13)

where α and β are positive constants that weight the violations of the velocity and position
constraint equations respectively and play the role of control terms. It should be noted that
the method does not correct the constraint violations but simply keeps them under control.
The use of the Baumgarte stabilization method is carried out by employing Ch

qq̈ = Qh
d −

2αĊh − β2Ch instead of Eq. (7) during the numerical integration process of the system
equations of motion.

Baumgarte [5] highlighted that the suitable choice of the parameters α and β is per-
formed by numerical experiments. In general, if α and β are chosen as positive constants,
the stability of the general solution of Eq. (13) is guaranteed. When α is equal to β , critical
damping is achieved, which usually stabilizes the system response more quickly. Neto et.al.
[34] show that, for a multibody system made of rigid bodies, these constants have values
in the range of (1 → 10). Several research articles have been published about how to set
the gain and how that affects the system. Flores et.al. [15] pointed out that stabilizing the
values of α = β = 5 is a good choice for multibody systems consisting of rigid bodies that
converge the constraints without oscillation. Nada [29] shows the values of α and β that
give a damping factor of 0.707 to be α = 5, β = 12.

The simple way for obtaining the Baumgarte parameters is to extend the constraint equa-
tion in Taylor’s series while ignoring elements with orders greater than two [15]. In this
case, Baumgarte parameters and time step may be stated mathematically as (α = 1/δt, β =√

2/δt).
Consequently, the Baumgarte method still has some ambiguity in determining optimal

feedback gains. Indeed, it seems that the value of the parameters is purely empirical, and
there is no reliable method for selecting the coefficients α and β . The improper choice of
these coefficients can lead to unacceptable results in the dynamic simulation of multibody
mechanical systems. Although Baumgarte’s constraint stabilization gives good results in
some applications, it does not help some particular configurations of the systems, such as in
the neighborhood of kinematic singularities.

3 Constraint stabilization using fuzzy logic control

The fuzzy control methodology is known to many who are interested in the field of auto-
matic control. In this paper, FLC will be applied to stabilize the constraints of multibody
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Fig. 3 Proposed FLC for constraint stabilization

systems. Therefore, it will be presented in a brief but simple manner to explain the utiliza-
tion procedure, and the reader may refer to the fundamental references of FLC for further
information [49]. In this section, the FLC is presented as a strategy oriented towards solving
the shortcomings of other multibody system constraint stabilization methods.

3.1 Introduction to FLC

Fuzzy controllers take observable variables as inputs and, based on a set of rules, construct
a compensation action as outputs. In the constraint stabilization of multibody systems, the
inputs are the constraint function and its time derivative, i.e., Ch(q, t) and Ċh(q, t), the con-
straints at position and velocity levels. The entire FL controller is divided into mainly three
different subsystems: fuzzification, fuzzy rule-based decision making, and defuzzification
[38, 49]. In the fuzzification phase, the numerical input values are normalized, translated
into linguistic variables, and then mapped into the degrees (probabilities) to which the inputs
belong to respective fuzzy sets. These sets are described by certain membership functions
(MFs), which may be defined using a variety of curves, although triangular or trapezoidal
MFs are the most frequent. FLC’s inputs Ch(q, t) and Ċh(q, q̇, t) for constraint stabiliza-
tion problem are normalized, according to the permissible violations of constraints, using
the scaling factors

(
Kp and Kd

)
such that they fall within a specific range, the most typical

range is [−1,1]. The output of the fuzzification phase is the probabilities of each MF for
every input AMFs

input.
The fuzzy rule table is a matrix of values that defines what the output control surface

should look like. The number of inputs and amount of inputs along with the number of
fuzzy membership functions will determine the rule table dimensions. The number of ele-
ments that are placed in the rule table indicates the number of membership functions used in
the fuzzy system. The output of the fuzzy rules table is the strength of each rule based on the
inputs’ probabilities. The defuzzification phase, called inference, utilizes fuzzy logic (FL)
operators to map the function between input and output. The two basic methods of fuzzy in-
ference are Mamdani and Sugeno [49]. The fuzzy inferences used with the Mamdani form of
fuzzy rules includes both Mamdani and Gödelian combinations. The first includes the min-
imum and product inferences, whereas the second includes Dienes-Rescher, Lukasiewicz,
and Zadeh inferences [49]. On the other hand, Sugeno shows that both zeroth-order and
higher-order forms can be implemented. Finally, the gain factor Kc for the output is deter-
mined in such a way that the output of the FLC can generate the required control action. The
schematic of the proposed FL controller is shown in Fig. 3.
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Fig. 4 Triangular MF

Fig. 5 Trapezoidal MF

3.1.1 Fuzzification

A membership function (MF) is a function that associates each point in X, where x ∈ X,
with a real integer in the range [0,1]. There are several MFs which can be used as fuzzy
sets, for example, the mathematical representation for triangular MF, see Fig. 4, is defined
by its parameters {a, b, c} such that

A(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 x ≤ a,
x−a
b−a

a ≤ x ≤ b,
c−x
c−b

b ≤ x ≤ c,

0 x ≥ c.

(14)

A(x) is the probability of the input x, and the parameters {a, b, c} with a < b < c determine
the x-coordinates of the three corners of the underlying triangular MF. Depending on the
relationships between a, b, and c, triangular MFs may be asymmetric. A trapezoidal MF
specified by four parameters {a, b, c, d}, see Fig. 5, is defined as

A(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x−a
b−a

a ≤ x ≤ b,

1 b ≤ x ≤ c,
d−x
d−c

c ≤ x ≤ d,

0 x ≤ a ∪ x ≥ d.

(15)

The singleton MF is defined by its parameter c such as

A(x) =
{

1 x = c,

0 otherwise.
(16)



Stabilization of multibody systems using FLC

To reduce computation time, the MFs can be represented using logic functions based on
logic operations, which can be built in combination with the fixing of chosen geometrical
parameters that do not affect the subsequent control operations.

3.1.2 Inference engine and defuzzification

In the rule base unit, there are a set of rules that relate to input and output variables of the
controller. These rules are simple if-then structures with a condition and appropriate value
of each rule. For example, rule 1: if Ch is (− ⇓) and Ċh is (− ⇓), then the appropriate
value from the rule table c1 is −1, where (− ⇓) means Negative Big. Table 1 shows the
appropriate value of each rule, i.e., cis, where i = 1 −→ N and N is the number of rules.

In the case of manipulating two inputs, one can calculate the measure of the influence
of rule i on the output by estimating the rule-strength wiaccording to the corresponding
probabilities as follows:

wi = A
j

1 ∩ Ak
2, (j, k = 1 −→ 5) , (17)

where A
j

1 is the probability of j th MF for input 1, and Ak
2 is the probability of MF k for

input 2. The fuzzy OR/AND operator simply selects the maximum/minimum of the two
probabilities.

The inference engine manages the input variables and the rule base, and it decides which
appropriate values are used. There are two types of inference systems varying somewhat
in the way outputs are determined: Mamdani-type and Sugeno-type [49]. Mamdani’s fuzzy
inference method expects the output’s MFs to be fuzzy sets that needed defuzzification.

Instead of integrating across the two-dimensional function to find the centroid, Sugeno-
type systems use a single spike as the output MF rather than a distributed fuzzy set. This
type of output is known as a singleton output MF, Eq. (16). It enhances the efficiency of
the defuzzification process because it greatly simplifies the computation required by the
Mamdani method. In this case, the weighted average of a few data points is used to calculate
the control output. A typical rule in a Sugeno fuzzy model for two-input single-output has
the form: If input 1 is x and input 2 is y, then output is z = ax + by + c, and for zero-order
Sugeno model, the output level z is a constant (a = b = 0), i.e., z = c. Thus, the final output
of the system is the weighted average of all rule outputs, computed as

U =
N∑

i=1

wizi /

N∑

i=1

wi, (18)

where wi is computed by using Eq. (17), which is the least significant bits of the inputs, zi

is the rule-table value (zero-order Sugeno model), and N is the number of rules according to
Table 1. The weighted average method is suitable for symmetric membership functions. The
defuzzification stage estimates the final output according to Eq. (18). Note that the definition
of the outputs is only a singleton MF; by doing this the computation of the centroid of mass
or any other defuzzification method is avoided because there is only one value defined for
the output.

3.2 FLC constraint stabilization

The proposed method, introduced in this paper, can be presented as shown in Fig. 6, which
can be viewed as a regulator problem of a double integrator system. The “drift effect” due
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Table 1 5 × 5 rule-base table.
(− ⇓) Negative Big, (− ↓)

Negative Small, (←→)

Zero,(+ ↑) Positive Small, (+ ⇑)

Positive Big

C/Ċ − ⇓ − ↓ ←→ + ↑ + ⇑

− ⇓ −1 −1 −1 −1/2 0

− ↓ −1 −1 −1/2 0 1/2

←→ −1 −1/2 0 1/2 1

+ ↑ −1/2 0 1/2 1 1

+ ⇑ 0 +1/2 1 1 1

Fig. 6 Constraint stabilization
using FL controller

to violation of the constraints might be described as unknown disturbances to the system Ũ.
The control action of the FLC needs to reduce the impact of the unknown disturbances
as much as possible. These disturbances vary in accordance with the method of numerical
integration that is being used (whether it be explicit or implicit), the time step and interval
of integration, as well as the allowable absolute and relative error of integration. When
developing generic subroutines that deal with multibody systems, it is impossible to predict
the values the user would choose since there are so many possible combinations. As a result,
the system is considered fuzzy, and perhaps the difference is that the rate of change of the
error is not calculated analytically; rather, it may be computed numerically using Eq. (2),
which helps to reduce calculation time.

The paper suggests implementing Sugeno-type systems to estimate the output of the
FL controller. This is due to the fact that it improves the efficiency of the defuzzification
process by considerably simplifying the calculation needed by the Mamdani approach. The
controller input variables are the components of Ch(q, t) and Ċh(q, q̇, t), i.e., the constraint
functions in the position and velocity levels.

Five MFs subjected to each input will be utilized in the fuzzification phase. Each mem-
bership MF1 to MF5 describes the probability of the input variable as (− ⇓) Negative Big,
(− ↓) Negative Small, (←→) Zero, (+ ↑) Positive Small, and (+ ⇑) Positive Big. Three
fuzzy sets of inputs, illustrated in Figs. 7, 8, 9, will be investigated to demonstrate the ro-
bustness of the numerical integration with each set with different user’s preferences. Set I

is comprised of triangular MFs, set II of trapezoidal MFs, and set III of Gaussian MFs.
Inference engine consists of 25 rules, practically, the 5 × 5 rule-base table, see Table 1

will be implemented. Zeroth-order Sugeno form of fuzzy rules is used, and the resulting
inference output surface is represented Fig. 10 for set I . Singleton MFs that are assigned for
output variable are shown in Fig. 11.

As shown in Fig. 6, the constraint violation is introduced to the system as unknown
disturbances Ũ, and thus

C̈h(q, q̇, t) + Ũh = 0. (19)
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Fig. 7 Set I: Triangle MFs for
input variables

Fig. 8 Set II: Trapezoidal MFs
for input variables

Fig. 9 Set III: Gauss MFs for
input variables

Fig. 10 Standard control surface
constructed from set I
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Fig. 11 Singleton MFs for output
variable

The FLC action Uh
(

Ch, Ċ
h
, t

)
must compensate this drifting, i.e., Uh = Ũh. Thus differen-

tial equations Eq. (3) can be represented as

C̈h(q, q̇, t) + Uh= Ch
qq̈ − Qd + Uh = 0. (20)

Therefore, the right-hand side of Eq. (7) is modified to

Ch
qq̈ = Qh

d − Uh. (21)

3.3 Outline of solution method

This section outlines the proposed method of constraint stabilization for multibody system
through the utilization of the fuzzy logic control, as described in the last section. The outline
can be summarized into the following steps:

1. Formulate the equations of motion of the system by defining the mass matrix, Coriolis
inertia forces, and external forces.

2. Based on the initial configuration of the system, construct the constraint functions, its
Jacobian, and the quadratic velocity vector.

3. Select the suitable membership functions for the constraint stabilization using FLC. Set
III can be used as an initial selection for the control inputs, and a singleton membership
function for the controller output.

4. Based on the permissible constraint violations, select the scaling factors Kp , Kd , and Ku.
Initial selection can be carried out to normalize the norm-1 of the constraint functions
and its time derivatives to desired values, such that Kp = 1/‖C‖, Kd = 1/

∥∥Ċ
∥∥, and

Ku = 100Kp . In this case, it is possible to set upper boundaries on violations, thereby
enabling their regulation. In general, the values of the scaling constants can be determined
based on the violations subsequent to the first integration steps.

5. Calculate the control action and stabilize the constraints by using Eq. (21).
6. Solve Eq. (6) for the acceleration vector and Lagrange multipliers.
7. Integrate the generalized accelerations using any appropriate ODE solver, the initial se-

lection of ODE45 can be utilized.

Consider a simple example of triple pendulum rotating in the xy plane, see Fig. 12.
The system is composed of three rigid bodies and three revolute joints. The point O is
the location of the revolute joint that imposes a connection between the ground and the
first body. The points P 1, P 2 are the locations of revolute joints acting as connections be-
tween the three bodies. The pendulum possess identical geometric dimensions, having a
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Fig. 12 Planar model of triple
pendulum

length of l = 0.3 [m], a mass of m = 0.25 [Kg], and a moment of inertia about the cen-
troidal axis J = 1

12 ml2 [Kg.m2]. The body frames are attached to the centers of masses, i.e.,
Qv = 0. The pendulum is subjected to gravitational loading toward the y-axis. The mass
matrix can be constructed as M = diag

(
Mi

)
, where Mi = diag

([
mi mi J i

])
. The gen-

eralized force can be constructed as Qex = [
Q1

g Q2
g Q3

g

]T
, where Qi

g = [
0 mig 0

]T
,

g = −9.81
[
m/s2

]
is the acceleration constant. The constraints can be written as fol-

lows:

C =
⎡

⎣
R1 + A1ūO

R1 + A1ū1P 1 − R2 + A2ū2P 1

R2 + A2ū2P 2 − R3 + A3ū3P 3

⎤

⎦ , whereAi =
[

cos θ i − sin θ i

sin θ i cos θ i

]
,

where Ri = [
Rx Ry

]iT
, ūO = [−l/2 0

]T
, ū1P 1 = [

l/2 0
]T

, ū2P 2 = [−l/2 0
]T

,

ū3P 2 = [
l/2 0

]T
. The membership functions can be constructed in the preprocessing stage

by using the MATLAB functions addMF, addRule, and evalfis as
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Fig. 13 Direct correct stabilization of triple pendulum in xy-plane - small displacement

During the integration process, the Qd can be corrected, as Eq. (21), by using the following
command:

The system of triple pendulum exhibits chaotic behavior, indicating extreme sensitivity to
the initial conditions. When the motion stays close to the equilibrium position, i.e., the initial
displacement is small, it undergoes simple harmonic motion. Nevertheless, in cases where
the initial displacement is large, repeating oscillations turn into chaotic motion. Solving the
equations of motion demonstrates this behavior. It can be observed that the implementation
of the direct correct stabilization method results in fast numerical integration with minimal
violations, particularly in scenarios involving small displacement and short simulation time,
as depicted in Fig. 13. The situation becomes significantly worse in the case of large dis-
placement, resulting in a chaotic scenario, and lengthy simulation time. Figure 14(↙) shows
wrong results as the tip point trajectory goes outside the reach of the pendulum. It is clear
that violations of constraints increase over time as integration progresses. Figure 15 shows
the effectiveness of the proposed FLC constraint stabilization method. The method allows
the user to regulate the violations to upper boundaries and enables simulation for longer
periods of time. In this example, the upper limits of the constraints were placed on the po-
sition level at 1e−6 and on the velocity level at 1e−4, respectively. In the rest of the paper,
a comprehensive evaluation will be conducted to compare all the methodologies introduced
upon their implementation on two distinct spatial systems.

4 Example I: multibody system with holonomic constraints

In this section, the rotary-pendulum shown in Fig. 16 is used to examine constraint stabiliza-
tion methods. The prototype consists of an L-shape arm that is connected to a revolute shaft
and rotates between ±180◦ degrees. At the end of the arm, a pendulum body is suspended
on a horizontal axis at the end of the L-shape arm. The pendulum link and weight combined
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Fig. 14 Direct correct stabilization of triple pendulum in xy-plane - large displacement

Fig. 15 FLC stabilization of triple pendulum in xy-plane - large displacement. (↖) initial configuration, (↗)
C, (↙) trajectory of the tip point, and (↘) Ċ

have the mass Mp and a total length of Lp and can rotate freely in the vertical plane. The
length from arm pivot to pendulum pivot is ra , and the length from pendulum center of mass
to its pivot is lp .

The pendulum and arm angle are measured by encoders attached. The measured variables
are the angular displacements and velocities of the pendulum and of the arm. The system
is interfaced by means of a data acquisition card, and the measurements are recorded. The
multibody model of the system is constructed and validated in [30, 32]. This pre-evaluated
example will be used here to examine the effectiveness of constraint stabilization methods.

As a multibody system, the model consists of two unsymmetrical bodies. The body’s
frames are fixed on the beginning of each body (not on the centers of masses), and they
can rotate on two perpendicular axes through rotational joints. The generalized coordinates
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Fig. 16 Multibody model of spatial pendulum

of the system include the Cartezian positions of the frames and the Euler angles of each
body, such that qi = [

Ri
x Ri

y Ri
z φi θ i ψi

]T
, i = 1,2. At the configuration shown

in Fig. 16, the frame of body 1, the L-shape arm,
(
x1,y1, z1

)
is parallel to the global frame(

x0,y0, z0
)
, and the axis of rotation is the global z-axis that coincides with the axis z1. The

constraint functions of the revolute joint between the ground, body 0, and body 1 can be
expressed as

CGR1 =
⎡

⎣
r1P − r0P

z1T · x0

z1T · y0

⎤

⎦ =

⎡

⎢
⎢⎢
⎢
⎣

R1
1

R1
2

R1
3 − lg

sinφ1 sin θ1

− cosφ1 sin θ1

⎤

⎥
⎥⎥
⎥
⎦

5×1

= 0. (22)

Note that r0P = R0 + A0ū0, R0 = 0, A0 = I, ū0P = [
0 0 lg

]T ⇐⇒ r0P = ū0P , x0 =
[

1 0 0
]T

, y0 = [
0 1 0

]T
, and other terms regarding the L-shape body are r1P =

R1 + A1ū1P , since ū1P = 0 ⇐⇒ r1P = R1, where the rotation axis z1 can be found as the
third column of the transformation matrix as follows:

z1 = A1
(:,3) =

⎡

⎣
sinφ1 sin θ1

− cosφ1 sin θ1

cos θ1

⎤

⎦ (23)

such that the last two equations in Eq. (22) are the first and second elements of z1. Similarly,
the constraint functions of the revolute joint between the L-shape body and the pendulum



Stabilization of multibody systems using FLC

can be expressed as

CGR2 =
⎡

⎣
r1K − r2K

z2T · x1

z2T · y1

⎤

⎦ = 0, (24)

where ū1K = [
ra 0 la

]T
, ū2K = [

0 0 −ro

]T
, x1 = A1

(:,1), y1 = A1
(:,2), and z2 = A2

(:,3),
Eq. (24) can be written as

CGR2 =
⎡

⎢
⎢
⎢⎢
⎢⎢
⎣

R1
x + (

cosφ1 cosψ1 − sinφ1 cos θ1 sinψ1
)
ra + la sinφ1 sin θ1 − R2

x + ro sinφ1 sin θ2

R1
y + (

sinφ1 cosψ1 + cosφ1 cos θ1 sinψ1
)
ra − la cosφ1 sin θ1 − R2

y − ro cosφ1 sin θ2

R1
z + (

sin θ1 sinψ1
)
ra + cos θ1la − R2

z + ro cos θ2

sinφ1 sin θ1 sinφ2 sin θ2 + cosφ1 sin θ1 cosφ2 sin θ2 + cos θ1 cos θ2
(− cosφ1 sinψ1 − sinφ1 cos θ1 cosψ1

)
sinφ2 sin θ2 − · · ·

· · · (− sinφ1 sinψ1 + cosφ1 cos θ1 cosψ1
)

cosφ2 sin θ2 + sin θ1 cosψ1 cos θ2

⎤

⎥
⎥
⎥⎥
⎥⎥
⎦

5×1

= 0.

There are ten constraint functions that represent the holonomic nature of a fully nonlinear
and nonautonomous system. The system constraint functions can be assembled as

Cq (q) =
[

CGR1

CGR2

]

10×1

= 0. (25)

Accordingly, the model is validated in [30, 32] as the pendulum released for free oscil-
lation from a vertical position at a starting angle of 170 degrees, and the angular velocities
of the arm and pendulum, i.e.,

(
ω̄1, ω̄2

)
are recorded, where ω̄i is the local angular veloc-

ity of body i. This validation of the multibody model enables us to choose the method of
integration and define its capabilities.

Four distinct integrators are utilized, which are abbreviated as follows: RK45: single-step
explicit Runge–Kutta (4,5) solver [11], TR − BD: implicit Runge–Kutta with a trapezoidal
rule step and a backward differentiation [20], ABM13: Adams–Bashforth–Moulton multistep
solver of variable orders 1 to 13 [15, 47], and Radau5 implements the implicit Runge–Kutta
method of fifth order introduced by Hairer [18] and implemented for multibody systems
[33].

Figure 17 depicts the norm of constraint violations of the system. The solution is accom-
panied by significant violations with various scales. Obviously, the ABM13 method, when
utilized judiciously, is more effective than any other method. It may be accepted for short
simulation time, but for long simulations, the absence of error control on constraints causes
a progressive increase in constraint violations, and consequently, the constraints begin to
be violated as a result of the integration process. In addition, the ABM13 method is not self-
starting and requires the help of a single step scheme to initiate the integration process, which
is another error-causing reason among others [15]. On the other hand, TR − BD produces
unbounded violations at early simulation time, and Radau5 demands excessive computation
time in comparison to ABM13 (145%) and RK45 (230%).

Toward the paper’s goal, minimizing constraint violations with explicit solver with short-
est computation time, the constraint violations using RK45 solver with the Baumgarte sta-
bilization method are illustrated in Figs. 18, 19. Three sets of (α,β) are used as follows:
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Fig. 17 Constraint violations
without stabilization - Position
level - δt = 1 ms

Fig. 18 Constraint violations
with Baumgarte stabilization -
Position level

Fig. 19 Constraint violations
with Baumgarte stabilization -
Velocity level

RK45B1 : (α = 5, β = 5), RK45B2 : (α = 5, β = 12), and RK45B3 : (α = 1/δt, β = √
2/δt),

where δt is the time step of the integration. The integration is carried out using different val-
ues of δt with δt = 1,10,50 [ms]. The figures show the 1-norms of the constraint vectors,
which are the sum of the absolute values of the vector elements.

Obviously, only RK45B3 gives a stable behavior at the position and velocity levels with
spaced step time δt = 50 [ms]. Constant values of (α,β) give unstable behavior for the same
step time. Clearly, identifying these values (α,β) is the most difficult aspect of Baumgarte
stabilization. For dense time steps, all constant sets of the Baumgarte stabilization method
provide a stable behavior. However, there is a significant difference in the calculation time,
which we shall discuss in more detail with the proposed method in the paper. It should
be noted that RK45B3 depends on the step time, and that utilizing dense steps results in
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Fig. 20 Constraint violations
with FLC stabilization - Position
level

Fig. 21 Constraint violations
with FLC stabilization - Velocity
level

significant enlargement of the stabilization constants, which may affect the calculation time
accordingly.

So, the challenge of introducing the FLC stabilization is to achieve a higher level of per-
formance than the RK45B3 and direct correction approaches by using the explicit integration
method, i.e., RK45, with the largest possible step time of integration,i.e., δt = 50 [ms], and
shortest possible calculation time.

In this section, we examine the FLC constraint stabilization method as established in
Fig. 6 with the three sets of membership functions shown in Figs. 7–9 for the two inputs,
and singleton MF for the output, Fig. 11. These three controllers denoted as RK − FLC1 :
(SetI), RK − FLC2 : (SetII), and RK − FLC3 : (SetIII) are using triangular, trapezoidal, and
Gaussian MFs respectively. In addition, the FLC has three scaling factors, see Fig. 3, which
are held constant throughout the numerical integration process. In this investigation, the
values of these constants rely on the permissible error of the constraint functions at position
and velocity levels, such that Kp = 1 × 102, Kd = 1 × 10−2, and Ku = 1 × 104.

Figures 20, 21 show the 1-norms of the constraint violations obtained using the direct
correction, Baumgarte, and FLC stabilization methods: RK45 − DC, RK45B3, and RK −
FLC1,2,3, respectively, with different values of δt .

It is clear from the two figures that the RK − DC method is ineffective for lengthy simu-
lations as the error accumulates with the simulation time at the position and velocity levels,
and that it is only applicable for short simulation time with utilizing extremely intense time
steps. As mentioned above, the RK45B3 method gives stable results and with an acceptable
violations that do not affect the results of numerical integration. The most important point is
the stability of the constraints with using of spaced time steps, here δt = 50 [ms]. In compar-
ison with these results, the contribution provided by stabilizing the constraints using fuzzy
control is noticeable. The three cases, RK − FLC1,2,3, show a stable behavior with a lower
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Fig. 22 Ninth constraint
violations with FLC
stabilization - Position level

Fig. 23 Ninth constraint
violations with FLC
stabilization - Velocity level

level of violations than RK45B3, particularly at the velocity level. It can be concluded that
RK − FLC3 with the Gaussian membership function produces better outcomes in terms of
stability and violations.

Additionally, all rotational coordinates of the system are included in the last two equa-
tions of Eq. (25), i.e., the fourth and fifth equations in Eq. (24), which restrict the relative
rotation between the arm and the pendulum. Figures 22, 23 depict the dynamics of the ninth
constraint at the position and velocity levels, respectively. It should be noticed that RK-DC
remains stable for less than 10% of the entire simulation time, while the RK45B3 shows a
highly oscillatory nature for more than 50% of the simulation time before becoming stable.
On the other hand, fuzzy methods are distinguished by rapid damping of oscillation, whereas
employment of Gaussian functions, RK − FLC3, yields the best possible performance. This
is due to the continuity of membership functions of set III, see Fig. 9, while the discontin-
uous shapes of RK − FLC1,2 methods contribute to the oscillating nature of the constraint
dynamics.

Concerning the last aspect, the solver’s calculation time, which is a key factor when
comparing the various approaches, the calculation times for all investigated methods are
monitored and presented in Fig. 24 with varying δt values. With RK − FLC3, the minimal
computation time may be attained. Although the RK45B3 exhibits a near value of calcula-
tion time compared to RK − FLC3, the violation is high, see Figs. 20, 21. In addition, the
calculation time of RK45B3 grows sharply when dense steps are implemented, going be-
yond the axe limits. For the same step, it is generally observed that the calculation times for
FLC-stabilization methods are often close to each other. Based on the previous explanation,
the RK − FLC3 with Gaussian membership function produces better outcomes in terms of
stability, violations, and calculation time.
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Fig. 24 Calculation time of
solvers

Fig. 25 Comparison with
ABM13

Fig. 26 Comparison with
ABM13 as reference solution

It is worth mentioning that all the stabilization methods described above were performed
on the same CPU processor (Intel(R) Core(TM) i9−7920X, 2.90 GHz), with only one core
utilization, the multicore and parallel computation are not employed in this study.

The simulated outputs of local angular velocities and displacement are shown in Figs. 25,
26, respectively. The comparison is carried out between the results of ABM13 integrator
without stabilization but with dense steps (δt = 0.1 [ms]) and referred in the figures as
the reference curve, and the proposed FLC-stabilization method RK − FLC3 with (δt =
50 [ms]). It can be concluded, with these results, that the fuzzy approach for constraint
stabilization of holonomic multibody systems with rigid bodies and linear constraints at the
velocity level is quite successful.
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5 Example II: multibody system with nonholonomic constraints

An epicyclic gear train is demonstrated in this section to investigate multibody systems sub-
jected to position and velocity constraints and to examine the proposed method of constraint
stabilization utilizing FLC.

In multibody systems, both holonomic and nonholonomic restrictions may coexist. Non-
holonomic constraints impose restrictions on generalized velocities, consequently restricting
velocities and accelerations. They do not, however, restrict the generalized coordinates. This
implies that there are more independent coordinates than independent velocities or accelera-
tions [21, 27, 39]. The transmission of motion through gear trains, using simplistic assump-
tions, could be considered an example of these nonholonomic constraints-subjugated sys-
tems. These assumptions include that the gear-set model is represented by two pitch circles
rolling on each other without slipping; gears in contact are considered rigid, the flexibility
of gear teeth has been ignored, the backlash between gears is not taken into account, and
spacing errors and misalignments are not considered. In this case, the tangential velocity be-
tween gear i and j at the contact point is equal, i.e., ω̄i

z · ri = ω̄
j
z · rj , where r is the radius of

the gear and ω̄z is the local angular velocity of the gear. It should be noted that, in the case of
using Euler angles as orientational coordinates, i.e., θ i = [

φi θ i ψi
]T

, the local angular
velocity can be expressed as ω̄i

z = 2 cos
(
θ i

)
φ̇i + ψ̇ i , whereas using Euler parameters, i.e.,

θ = [
e0 e1 e2 e3

]T
, leads to ωi

z = −2e3ė0 + 2e2ė1 − 2e1ė2 + 2e0ė3. In both cases, the
constraint equation of equal tangential velocity between the two gears cannot be integrated
in time to form a position constraint (nonintegrable).

In the current example, the multibody system of the epicyclic gear train can be assembled
using seven bodies with the arrangement listed in Table 3. Unlike the previous example,
Euler parameters were utilized to designate the body orientation instead of Euler angles to
overcome the problem of kinematic singularities. Thus, a set of seven coordinates will be

utilized to define each body’s position and orientation, i.e., qi =
[

RiT θ iT
]T

, i = 1, . . . ,7,

where θ i = [
ei

0 ei
1 ei

2 ei
3

]T
are the Euler parameters of body i. The ring gear is held

in place by a rigid joint with the ground. The gear train, see Fig. 27, has two pins that
are rigidly attached to the arm body from one end and carry two planet gears from the other
end. Accordingly, the total number of generalized coordinates is 49, and the interdependence
between them is established by specifying the constraints in accordance with the types of
joints as presented in the layout of Table 4. In this table, the number of constraints includes
the Euler parameter constraints of each body that have unit magnitude, i.e., θ iθ iT = e2

0 +e2
1 +

e2
2 + e2

3 = 1. In addition to holonomic constraints, nonholonomic constraints are imposed
because the engaged gears have zero relative velocities at their contact points. Therefore,
the following equations apply:

T2
(
ω̄2

z − ω̄3
z

) + T5
(
ω̄5

z − ω̄3
z

) = 0, (26)

(T2 + 2T5) ω̄1
z − (T2 + T5) ω̄3

z − T5ω̄
5
z = 0, (27)

T2

(
ω̄2

z − ω̄3
z

) + T7

(
ω̄7

z − ω̄3
z

) = 0, (28)

where Ti is the number of teeth of respective gear body and ω̄i
z is the angular velocity about

its local z-axis. The last constraint equation relates the rotational speed of the arm, planet,
and sun gears. Thus, the total number holonomic and nonholonomic constraints becomes
48, and consequently, the system has only one degree of freedom.
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Fig. 27 Multibody model
epicyclic gear train

The system is presented by Nada [31], and the simulation results of applying a torque of
0.1 [N.m] on the arm along with the rotational axis (local z3-axis) are carried out. The direct
correction method of constraint stabilization is examined in comparison with the selective
coordinates partitioning method, in which the accumulative violations are not acceptable
[31].

The nonholonomic constraints, Eqs. (26)–(28) are linear in the generalized velocities,
therefore, these equations can be written as

Ċnh(q, q̇, t) = G(q, t)q̇ + g(q, t) = 0 (29)

such that G and g are respectively a matrix and a vector that may depend on the system
coordinates and time. Thus, the total constraints, in the velocity level, can be constructed by
combining the holonomic part, Eq. (2), and the nonholonomic part of Eq. (29) as follows:

Ċ(q, q̇, t) =
[

Ċh(q, t)

Ċnh(q, q̇, t)

]
=

[
Ch

q q̇ + Ch
t

G(q, t)q̇ + g(q, t)

]
= 0 (30)

�
[

Ch
q

G(q, t)

]
q̇ +

[
Ch

t

g(q, t)

]
= 0. (31)

The last equation in Eq. (31) represents a direct restriction on the vector of generalized ve-
locities. Consequently, the acceleration constraint equations may be derived by performing
a second differentiation of Eq. (30) with respect to time as follows:

C̈(q, q̇, t) =
[

C̈h(q, q̇, t)

C̈nh(q, q̇, t)

]
=

[
Ch

qq̈ + (
Ch

qq̇
)

q
q̇ + 2Ch

qt q̇ + Ch
tt

Gq̈ + (Gq̇)q q̇ + (
gq + Gt

)
q̇ + gt

]
= 0.
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Fig. 28 Stabilization of systems
subjected to nonholonomic
constraints using FLC

Hence, updating Eq. (6), the generic equations of motions for systems include nonholonomic
constraints and can be written as

⎡

⎣
M ChT

q ĊnhT

q̇
Ch

q 0 0
Ċnh

q̇ 0 0

⎤

⎦

⎡

⎣
q̈
λh

λnh

⎤

⎦ =
⎡

⎣
Q
Qh

d

Qnh
d

⎤

⎦ , (32)

where Ċnh
q̇ = G(q,t) is the Jacobian matrix of the nonholonomic constraints, Qnh

d =
− (Gq̇)q q̇ − (

gq + Gt

)
q̇ − gt , and λnh are the Lagrange multipliers associated with the

nonholonomic constraints. Note that the tangential forces between the contacted gears can
be estimated as FT = ĊnhT

q̇ λnh.
In this case, beside stabilizing the holonomic constraints as demonstrated in Sect. 3,

we use FLC with two inputs (Ch(q, t), Ċh(q, t)) and one output Uh that compensate the
integration errors at two levels. Nonholonomic constraints will need the addition of a further
FL controller to stabilize the nonholonomic constraints at the velocity level. Figure 28 shows
the modified layout for constraint stabilization of both types, and for the nonholonomic part,
it shows only one input and one output. Therefore the governing rules are reduced to five
rules only, specifically, the third row of Table 1 since the nonholonomic constraints are
(− ⇓) Negative Big, (− ↓) Negative Small, (←→) Zero, (+ ↑) Positive Small, and (+ ⇑)

Positive Big, according to permissible margin of error. We can refer to single input single
output FLC as FLC − SISO or by the number of utilized rules, as FLC1×5.

The RK − FLC3 is employed for stabilizing the holonomic constraints with the same
scaling factors, while the nonholonomic constraints are stabilized using FLC − SISO with
Gaussian MFs for Ċnh(q, q̇, t) as the only input and the singleton MFs for the output. The
control action can be implemented for the multibody system as

Ch
qq̈ = Qh

d − Uh

Cnh
q̇ q̈ = Qnh

d − Unh

}
. (33)

The dynamics of the gear train system is characterized by high rotational motion, and
therefore the rotational coordinates, i.e., Euler parameters, change steadily. Figures 29, 30
show the violations of the Euler parameter constraints, θ iθ iT = 1, i = 1 −→ 7, at the po-
sition and velocity levels, respectively. The result confirms the prior case, presented in Ex-
ample I, where dampening of the constraint dynamics requires approximately 12% of the
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Fig. 29 1-norms of constraint
violation of the epicyclic gear
train

Fig. 30 Nonholonomic
constraint violation of the
epicyclic gear train

Fig. 31 Nonholonomic
constraint violation of the
epicyclic gear train

simulation time. Moreover, the nonholonomic constraints show a stable dynamic behavior
within the range of permissible error, see Fig. 31. It should be mentioned that the dynamic
behavior of the nonholonomic constraints under high rotation of the system’s components
and the exposure to singular configurations throughout this rotation demonstrates the effec-
tiveness of the FLC-stabilization.

Moreover, the norm of the holonomic as well as the nonholonomic constraints is pre-
sented in Fig. 32, which exhibits a limited and acceptable error for both types.
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Fig. 32 1-norms of constraint
violation of the epicyclic gear
train

6 Summary and conclusions

Real-time simulation of large multibody systems with time-consuming iterations of the nu-
merical solvers must be avoided. To do this, explicit schemes with deterministic timing
behavior are required to be implemented. However, some constraints drifting at the position
and velocity level may take place and encounter integration errors. Numerous publications
demonstrate constraint stabilization methods for holonomic constraints, whereas only a few
address the nonholonomic situation. It is found in the literature that the direct correction
method exhibits numerical instabilities and excessive computational time especially in sin-
gular configurations. On the other hand, the Baumgarte stabilization approach suffers from
the lack of a criterion in the choice of its control parameters. The challenge of introducing
the FLC stabilization is to achieve a higher level of numerical stability than the direct correc-
tion and Baumgarte approaches by using Runge–Kutta explicit integration with the largest
possible step time of integration and the shortest possible computation time. The paper sug-
gests implementing Sugeno-type systems to estimate the output of the Fuzzy controller. For
holonomic constraints, the paper proposes an FLC with various sets of membership func-
tions for the input variables, which are the constraint function and its time derivative, and a
singleton membership function for the output variable. The output of the controller compen-
sates the constraints drifting due to the numerical integration. For nonholonomic constraints,
the FLC is employed with one input variable that is Cnh only. The paper outlined a step by
step solution method and explained the method of selecting the FLC scaling constants. The
notable enhancement of the FLC-constraint stabilization is to provide a mechanism for reg-
ulating the permissible boundaries of the constraint violations, a feature that was missing
in other approaches to stabilizing the constraints. The comparisons are carried out using
various demonstrative examples of planar and spatial multibody systems subjected to holo-
nomic and nonholonomic constraints, where the simulation is performed on the same CPU
processor. As demonstrated by the examples provided in this study, incorporating the FLC
within the constraint stabilization implies robust performance against the type of motion
(periodic or chaotic), configuration status (determinate or singular), and highly rotated sys-
tems subjected to nonholonomic constraints. Based on the comparisons between results with
the direct correction, Baumgarte stabilization, and FLC-stabilization with different member-
ship functions, it is found that the FLC with Gaussian membership function produces better
outcomes in terms of stability, violations, and computation time and for both types of the
system constraints. It can be concluded that the constraint stabilization based on FLC intro-
duces an excellent solution for generic system configuration suitable for lengthy simulations
with minimal computation time, which are important factors in appraising the solution tech-
nique. The future work includes investigating the FLC-constraint stabilization of multibody
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systems with rolling and redundant constraints, flexible multibody, and joints compliance.
Future development of the FLC-stabilization will focus on the optimal selection of fuzzy
membership functions, and it is anticipated that irregularly distributed functions will yield
more effective outcomes.

Appendix 1: List of symbols

l Length
m Body mass
g Gravitational constant
t Time
δt Time step of integration
α Baumgarte parameter
β Baumgarte parameter
ci Value of fuzzy rule i

wi Strength of fuzzy rule i

λ Lagrange multipliers vector
θ Orientational parameters
ω Local angular velocity vector
� Differential change
a, b, c, d Membership parameter
e0, e1, e2, e3 Euler parameters
A Probability of input
K Scaling factor
N Number of fuzzy rules

T Number of teeth
r Global position
q Generalized coordinates vector
ū Local position
A Transformation matrix
C Constraint function
Cq Jacobian matrix
C†

q Pseudo-inverse of matrix Cq

G Velocity transformation matrix
I Identity matrix
M Mass matrix
R Global position of the body frame
U FLC control output
Ũ Constraint violations
Q Generalized force vector
Qex External force vector
Qg Gravitational forces
Qv Coriolis inertia forces

Note that the list of symbols and values of Example II is listed in Appendix 2.

Appendix 2: System parameters

Table 2 System parameters of spatial pendulum

Sym. Description Value Sym. Description Value

ra Width of L-shape arm Ja Moment of inertia of

ro Offset of pendulum body 2.54 Mp Mass of 2.54

�a Height of L-shape arm 1.39 Jp Moment of inertia of 1.39

�p1 Pendulum arm length 2.54 R3 Betz Optimization 2.54

�p2 Pendulum mass length 2.54 R4 Tapered (arbitrary) 2.54
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Table 3 Multibody system components of the epicyclic gear train

#. Body
name

Index of
coords

Inertia properties [Kg], [Kg.m2]
m Ixx Iyy Izz

1 Ring 1 → 7 6.97 0.25 0.255 0.507

2 Sun 8 → 14 0.85 0.00064 0.00064 0.00087

3 Arm 15 → 21 5.42 0.0032 0.0569 0.05957

4 Carr1 22 → 28 0.832 0.0016 0.0016 0.00093

5 Plnt1 29 → 35 4.41 0.013 0.013 0.024

6 Carr2 36 → 42 0.832 0.0016 0.0016 0.00093

7 Plnt2 43 → 49 4.41 0.013 0.013 0.024

Table 4 Holonomic constraints
of the epicyclic gear train Joint type Body(i) Body(j) # constraints

eqs.

Rigid Ground Ring 7

Revolute Ground Sun 6

Revolute Ground Arm 6

Rigid Arm Carrier1 7

Revolute Carrier1 Planet1 6

Rigid Arm Carrier2 7

Revolute Carrier2 Planet2 6
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